Exercise 27

Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

$$
f(x)=\left(x^{3}+1\right) e^{x}
$$

Solution

Use the product rule to differentiate $f(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\left(x^{3}+1\right) e^{x}\right] \\
& =\left[\frac{d}{d x}\left(x^{3}+1\right)\right]\left(e^{x}\right)+\left(x^{3}+1\right)\left[\frac{d}{d x}\left(e^{x}\right)\right] \\
& =\left(3 x^{2}\right)\left(e^{x}\right)+\left(x^{3}+1\right)\left(e^{x}\right) \\
& =3 x^{2} e^{x}+x^{3} e^{x}+e^{x} \\
& =\left(3 x^{2}+x^{3}+1\right) e^{x}
\end{aligned}
$$

Use the product rule again to differentiate $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x}\left[\left(3 x^{2}+x^{3}+1\right) e^{x}\right] \\
& =\left[\frac{d}{d x}\left(3 x^{2}+x^{3}+1\right)\right]\left(e^{x}\right)+\left(3 x^{2}+x^{3}+1\right)\left[\frac{d}{d x}\left(e^{x}\right)\right] \\
& =\left(6 x+3 x^{2}\right) e^{x}+\left(3 x^{2}+x^{3}+1\right)\left(e^{x}\right) \\
& =\left(6 x+6 x^{2}+x^{3}+1\right) e^{x}
\end{aligned}
$$

